
3D Authoring Tool “BS Content Studio”
supports Deferred Rendering for

improved visual quality
Oliver Neubauer
Project Manager

02.07.2013

 BS Content Studio
•BS Content Studio manages hundreds of lights
•WYSIWYG editor to create, manipulate and
 enrich your 3D models – authoring tool facilitates
 content generation
• visualisation in integrated 3D engine “BS Contact”
•Deferred Rendering reduces complexity of 3D
 scene

 BS Content Studio

Concept

•Improve the lighting
•Get rid of the light limitation (8 HW lights)
•More light → more realism
•Decouple the lighting of object from the
rendering of object

www.bitmanagement.com

History

•Inventor 1988 Michael Deering et al.
– Pixel colour calculation after resolving depth

•Current concept from 1990 Saito and Takahashi
– Introduce the G-Buffer

•

 Forward rendering

•Classical forward rendering for each pixel per
object
–Determine depth (culled or not)
–Normals + diffuse color + light color = final color

•Each pixel has to be rendered for every light
•Complexity O(m*n)
–m number of object
–n number of lights

 Forward rendering

•Shading is done in place
•HW lighting depends on vertex density

 Deferred Lighting

•1. Pass collects geometry information
•G-Buffer (Geometry Buffer) contains information
–Depth
–Diffuse colour
–Normal

•G-Buffer are MRT (multiple render targets)
textures

 Deferred Lighting

DEPTH NORMALS

COLOUR

 Deferred Lighting
•2. Pass collects Light information
•

Directional light

 Deferred Lighting
•3. Pass combine light and geometry information
•

Transparency

•Transparency is complicated
•Transparent object receive light and blends with
scene
•Transparent object use the old forward rendering
style

Transparency

•Scene with transparent
object
•Light on transparent
object use forward
shading
•Transparent blends
with deferred rendered
object

Pro & Contra
•Pros

– multiple lights for objects
– complexity O(m+n) m = Object; n = lights
– No limits of hardware lighting
– Only visible geometry get lighted
– Shadow maps easier to maintain
– Post effects easy to add

Pro & Contra
•Contra

– Transparent objects hard to handle
– Driver and graphic cards need MRT support
– Shader Model 3 required

• DX9
• OGL version 2

– Currently not available for OGLES 2.0

 “BS Contact” 3D
Engine

•New node DeferredNode in X3D Syntax

•

BS Contact
•Children contains nodes for deferred lighting
•MRT must have same bit rate

– A8R8G8B8
– R32F
– G16R16

•GlobalShader field for MRT shader writer
•MRT's are filled in one pass

BS Contact

DX9 HLSL pixel shader example for material MRT
PO PS_Colors_material(in VO input)
{

PO result = (PO)0;
result.normal = 0.5f * (normalize(input.normal) + 1.0f);
result.depth = input.depth.x / input.depth.y;
result.normal.a = material.power/128;

result.diffuse.rgb = material.diffuseColor.rgb*input.color.rgb;
result.diffuse.a = 1;
return result;

}

BS Contact
•1. RT is depth with 32 bit precision
•2. RT is colour 8bit for each RGB channel
•Last 8 bit are free to use (emissive colour factor?)
•3. RT is normal 8bit precision for each axis xyz
–Lead to quantization
–Solution 16bit for x and y axis reconstruct z axis

BS Contact

DEPTH NORMALS

COLOUR

BS Contact
•LightShader field for light colour calculation
•Light is rendered as geometry
•For each light type seperate shader
•Result Shader information stored in render target
•

BS Contact
DX HLSL pixel shader for directional light

float4 PixelShaderDirectionalFunction(VertexShaderOutput input) : COLOR0
{
 //get normal data from the normalMap
 half4 normalData = tex2D(normalSampler,input.TexCoord);

 //tranform normal back into [-1,1] range
 half3 normal = 2.0f * normalData.xyz - 1.0f;

 //get specular power, and get it into [0,255] range]
 half specularPower = normalData.a*128;

 //read depth
 float depthVal = tex2D(depthSampler,input.TexCoord).r;
 //compute screen-space position
 float4 position;
 position.x = input.TexCoord.x * 2.0f - 1.0f;
 position.y = -(input.TexCoord.y * 2.0f - 1.0f);
 position.z = depthVal;
 position.w = 1.0f;
 //transform to world space
 position = mul(position, g_mViewProjInvers);
 position /= position.w;

BS Contact
 //surface-to-light vector
 float3 lightVector = -normalize(light.direction);
 //compute diffuse light
 half NdL = max(0,dot(normal,lightVector));
 half3 diffuseLight = NdL * light.diffuseColor;
 //reflexion vector
 half3 reflectionVector = (reflect(lightVector, normal));
 //camera-to-surface vector
 half3 directionToCamera = normalize(cameraPos - position);

 //compute specular light
 half dotProd = dot(reflectionVector, directionToCamera);

 half specularLight= 0;
 if(specularPower>0 && NdL >0)
 specularLight = /*specularIntensity * */ pow(saturate(dot(reflectionVector, -directionToCamera)), specularPower);

 //output the two light values
 return float4(diffuseLight.rgb, max(0,specularLight)) ;
}

BS Contact
•LightRenderTarget field contains result from
shader
•32 bit texture RGB channels contains light colour
•8 bit Alpha channel for specularity
•

BS Contact

Light RT
with

98 Lights
and
random

colour

All lights
are
animate
d

BS Contact
•combinePostProcess field for PostProcess node to
process results from colour RT and light RT
•PostProcess node contains shader for combine
process
•Chaining of PostProcess nodes are flexible to add
own effects
•

BS Contact

BS Contact
•Post process effects simple to implement using
the already computed RT
–SSAO
–Shadow
–Blur
–Bloom
–Motion Blur

BS Contact
SSAO Buffer

BS Contact
•SSAO exampleNo SSAO SSAO

BS Contact
•BS Contact can handle hundreds of lights from
different types
•Performance depends on size and range of light
•Directional light is costly because full scene
lighting
•Small point lights could be cheap

BS Contact

•100 point lights
•98 spot lights
•all animated

 BS Content Studio
Deferred Rendering effects simply applied
(placing of lights in interactive 3D scene):
BS Content Studio Result

http://www.bitmanagement.de/php-bin/ViewVrml.php?url=http://www.bitmanagement.de/demos/Ellwangen/scene/ellwangen_deferred_out.wrl&fullPage=yes&install=yes

•Demo Scene available on
http://www.bitmanagement.de/en/company/research-development

	Slide1
	Slide35
	Slide34
	Slide2
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide21
	Slide22
	Slide23
	Slide24
	Slide25
	Slide26
	Slide27
	Slide28
	Slide29
	Slide30
	Slide36
	Slide33

